Google Firestore (Native Mode)
Firestore is a serverless document-oriented database that scales to meet any demand. Extend your database application to build AI-powered experiences leveraging Firestore's Langchain integrations.
This notebook goes over how to use Firestore to to store vectors and query them using the FirestoreVectorStore
class.
Before You Begin
To run this notebook, you will need to do the following:
After confirmed access to database in the runtime environment of this notebook, filling the following values and run the cell before running example scripts.
# @markdown Please specify a source for demo purpose.
COLLECTION_NAME = "test" # @param {type:"CollectionReference"|"string"}
🦜🔗 Library Installation
The integration lives in its own langchain-google-firestore
package, so we need to install it. For this notebook, we will also install langchain-google-genai
to use Google Generative AI embeddings.
%pip install -upgrade --quiet langchain-google-firestore langchain-google-vertexai
Colab only: Uncomment the following cell to restart the kernel or use the button to restart the kernel. For Vertex AI Workbench you can restart the terminal using the button on top.
# # Automatically restart kernel after installs so that your environment can access the new packages
# import IPython
# app = IPython.Application.instance()
# app.kernel.do_shutdown(True)
☁ Set Your Google Cloud Project
Set your Google Cloud project so that you can leverage Google Cloud resources within this notebook.
If you don't know your project ID, try the following:
- Run
gcloud config list
. - Run
gcloud projects list
. - See the support page: Locate the project ID.
# @markdown Please fill in the value below with your Google Cloud project ID and then run the cell.
PROJECT_ID = "extensions-testing" # @param {type:"string"}
# Set the project id
!gcloud config set project {PROJECT_ID}